
1/31/2002 1

Analyzing Properties of Service Discovery Protocols Analyzing Properties of Service Discovery Protocols
Using an ArchitectureUsing an Architecture--Based ApproachBased Approach

Christopher Dabrowski and Kevin Mills
National Institute of Standards and Technology

Gaithersburg, MD USA

Presentation at
Working Conference on

Complex and Dynamic Systems Architectures
Brisbane, Australia
December 12, 2001

Adaptive Software for a Changing World

1/31/2002 2

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Assessment of Architecture-Based Approach

Overview of On-Going Work
Measuring responses of different service discovery architectures
to node and link failures
How can these responses be improved?

Plans for Future Work

PresentationPresentation RoadmapRoadmap

1/31/2002 3

Dynamic discovery protocols..Dynamic discovery protocols..
enable network elements (including software clients and services, and devices):

(1) to discover each other without prior arrangement,
(2) to express opportunities for collaboration,
(3) to compose themselves into larger collections that cooperate to meet

an application need, and
(4) to detect and adapt to changes in network topology.

Selected Current (First) Generation Selected Current (First) Generation
Protocols for Dynamic Service DiscoveryProtocols for Dynamic Service Discovery

Universal

Plug and Play

Universal

Plug and Play

1/31/2002 4

Our GoalOur Goal

1) Use ADLs and associated tools to analyze Discovery Protocol
specifications to assess consistency and completeness wrt dynamic
change conditions—basis for defining gauges.

2) To provide metrics and approaches to compare and contrast emerging
commercial service discovery technologies with regard to critical
functions, structure, behavior, performance and scalability in the face of
dynamic change and to strengthen the robustness, quality and
correctness of designs for future protocols.

3) Provide recommendations on improving ADLs as tools for analyzing
architectures under conditions of dynamic change.

1/31/2002 5

• Build a generic, domain model (UML) providing consistent terminology
encompassing a range of service discovery protocols.

• Build executable models of service discovery protocols from extant
specifications--for analysis under conditions of dynamic change.

• Define consistency conditions and metrics to assess the performance
of executable models.

• Use scenarios to exercise models conditions of dynamic change.
• Compare and contrast our models with regard to function, structure,

behavior, performance, complexity, and scalability under conditions of
dynamic change.

• Design, model, and evaluate protocol mechanisms that enable
discovery protocols to self-adapt in the face of dynamic change (this part
of the project is funded by the DARPA Fault Tolerant Networks program).

Our Overall Technical ApproachOur Overall Technical Approach

1/31/2002 6

Summary of Current Results

• Developed architecture-based approach for modeling service
discovery protocols that relies on

– property analysis using consistency conditions to assess robustness of
distributed software components to dynamic change

– event analysis using explanatory capabilities provided by ADLs (Rapide)
to analyze consistency and completeness of software specifications
under conditions of dynamic change.

• Demonstrated viability of the approach to analysis of behavior and
performance of commercial Service Discovery Protocol specification.

• Evaluated ADLs for use in modeling and analyzing dynamic distributed
systems and provided recommendations

• Extended approach to make quantitative measurements of response of
alternative service discovery architectures to dynamic change
(currently being applied in ongoing study).

1/31/2002 7

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Assessment of Architecture-Based Approach

Overview of On-Going Work
Measuring responses of different service discovery architectures
to node and link failures
How can these responses be improved?

Plans for Future Work

PresentationPresentation RoadmapRoadmap

1/31/2002 8

Sample Network Topology Applicable to Jini Entities

Lazy Discovery Multicast Group

Service
Manager

(SM)

Service
User
(SU)

Service
Cache

Manager
(SCM)

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Matches services
registered by SM
to notification
requests
registered by SU

Discovers SCMs and
registers notification
requests.

Discovers SCMs and
registers services

1/31/2002 9

Foundation : A Generic Structural Model (UML) for Foundation : A Generic Structural Model (UML) for
ServiceService--Discovery DomainDiscovery Domain

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Manager

Service
Cache
Manager

Service
User

Service
Description

Service
Provider

Service
Repository

Service
Cache

Notification
Cache

Notification
Request

Parameter
Change
Notification
Cache Parameter

Change
Notification
Request

Local
Cache
Manager

Local
Service
Cache

1/31/2002 10

Architectural Description Languages & Tools….
• Represent essential complexity of service discovery protocols

with effective abstractions
– Rapide, public-domain ADL and toolset developed at Stanford

University for DARPA, provides ability to execute architecture
specifications, producing Partially Ordered Sets of Events (POSETs)
for analysis.

• Provide a framework and context
– to define metrics that yield qualitative and quantitative measures of

dynamic component-based software
– to model alternate approaches to specific functions or mechanisms
– to help pinpoint where inconsistencies and ambiguities may exist

within software implementing specifications & to understand how such
issues arise

– to compare and contrast dynamic service discovery architectures

1/31/2002 11

ArchitectureArchitecture--based Approach to Modeling and Analysisbased Approach to Modeling and Analysis
(using(using RapideRapide, an Architecture Description Language and Tools , an Architecture Description Language and Tools

Developed for DARPA by Stanford)Developed for DARPA by Stanford)

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Specification Model

Analyze
POSETs

Assess Correctness,
Performance, &
Complexity

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

TopologyScenario

Execute with
Rapide

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))

 implies (SM, SD) IsElementOf SU matched-services

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))

 implies (SM, SD) IsElementOf SU matched-services

Consistency
Conditions

1/31/2002 12

Layered View of Prototype JINI Architecture in Rapide
Derived from SEI Architectural Layers Approach

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

Legend
Type ofType of

Part ofPart of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

1/31/2002 13

RealReal--Time Checking of Consistency ConditionsTime Checking of Consistency Conditions
Sample Consistency Condition (CC #4 race condition)

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested-notifications &
(SM, SD) IsElementOf SCM registered-services &
Matches ((SM, SD), (SU, NR))

implies (SM, SD) IsElementOf (SU matched-services)

…that is, if an SU has requested notification with a Service Cache Manager of a
service that matches a service description registered by a Service Manager on
the same Cache Manager, then that service description should be provided to the
Service User.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager
• SU is Service User
• NR is Notification Request

• requested-notifications is a set of (SU,NR) pairs
maintained by the SCM

• registered-services is a set of (SM,SD) pairs
maintained by the SCM

• matched-services is the set of (SM,SD) pairs
maintained by the SU

1/31/2002 14

Use of Property and Event Analysis to Identify and
Understand Possible Registration Race Condition

For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
() +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
() +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

1/31/2002 15

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Assessment of Architecture-Based Approach

Overview of On-Going Work
Measuring responses of different service discovery architectures
to node and link failures
How can these responses be improved?

Plans for Future Work

PresentationPresentation RoadmapRoadmap

1/31/2002 16

Assessment of Architecture-Based Approach

• Used approach to verify robustness of Jini Protocol
under variety of failure scenarios

• Merits of approach for analysis of dynamic behavior
– Architectural model allowed easier representation of discovery

components and their behavior: more precise, concise and
informative.

– Provided insight into, and understanding of, collective behavior
of interacting components than could static specification

– Able to identify areas of ambiguity, inconsistency, and
incompleteness (reported 4 instances)

– Single model can be analyzed for behavior, performance and
logical properties

– Allowed alternative implementation options to be considered
and explored using realistic scenarios

1/31/2002 17

• Areas for Improvement
– Improvements to representation of structure

• Benefits of using first-class connectors
• Relaxation of strictly hierarchical connectivity

– Greater fidelity to real-world designs
– Fewer events in POSET

– Improvements to representation of behavior
• Explicit definition of component state (through export of

selected state variables) -- on par with definition of events
• Evaluation of consistency conditions against state(s) across

multiple components
• Linkage of events to state

– Need for customizable domain-specific syntax
• Improve understandability of ADL specifications to non-

specialists w/ customizable domain-specific syntax.

Assessment of Architecture-Based Approach (con’t)

1/31/2002 18

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Assessment of Architecture-Based Approach

Overview of On-Going Work
Developing metrics to measure responses of different service
discovery architectures to node and communication failures
How can these responses be improved?

Plans for Future Work

PresentationPresentation RoadmapRoadmap

1/31/2002 19

• Two-Party vs. Three-Party architectures
Two alternative architectural designs that underlie commercial service
discovery protocols, including Jini, UPnP, and Service Location Protocol

• Impact of Study:
1. Develop and formalize metrics and related generic set of test

scenarios that can be used to develop and test service discovery
products/applications

2. Continue to provide recommendations on improving ADLs
3. Provide valuable information to designers and users of service

discovery protocols for improving specifications, thus promoting
software quality and reliability.

Focus: How do TwoFocus: How do Two-- and Threeand Three--Party Architectures Party Architectures
for Service Discovery Respond to Failures?for Service Discovery Respond to Failures?

1/31/2002 20

Two PartyTwo Party vsvs. Three Party Architectures. Three Party Architectures

Notification Request

(from Data View)

<<repository entry>>

Parameter Notification Request

(from Data View)

<<repository entry>>
Service Cache
<<repository>>

Notification Cache
<<repository>>

0..*0..*

Aggregates

Service Cache
<<repository>>

Service Repository
<<repository>>

Service Parameter Change Notification
<<repository>>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data View)

<<repository entry>>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discover Network Context()
<<not shr>> activate Manager Discovery()
activate Announce Processing()
start Matching Task()
start Aging Task()
Service Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discover Network Context()
<<not shr>> Cache Manager Discovery()
<<OPT>> Announce Service Processing()
<<not shr>> start Renewal Task()
Service Manager()
<<not shr>> start Service Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+info cache

0..*

+service info
source

0..*

service information collection

SERVICE USER
discover Network Context()
Service Discovery()
<<not shr>> start Renewal Task()
Service User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Manager

Service
Cache
Manager

Service
User

Service
Description

Service
ProviderService

Repository

Service
Cache

Notification
Cache

Notification
Request

Parameter
Change
Notification
Cache

Parameter
Change
Notification
Request

Local
Cache
Manager

Local
Service
Cache

Third Party

1/31/2002 21

Selected Current (First) Generation Selected Current (First) Generation
Protocols for Dynamic Service DiscoveryProtocols for Dynamic Service Discovery

Universal

Plug and Play

3-Party Design 2-Party Design Adaptive 2/3-Party Design

Vertically Integrated
3-Party Design

Network-Dependent
3-Party Design

Network-Dependent
2-Party Design

1/31/2002 22

• Change Propagation and Consistency Maintenance: In both two-party
and three-party architectures changes in critical characteristics of Service
Descriptions (SDs) must propagate from Service Managers (SMs) to
Service Users (SUs) that already hold copies of the SDs.
• Change propagation may take place through polling, eventing, or ad-

hoc announcements – How do these strategies compare?
• Does the existence of a third party (i.e., Service Cache Manager, or

SCM) improve or hinder performance?
• Approach to metrics: use property analysis and failure test scenarios

to compare and contrast the alternative architectures wrt
• Probability of residual inconsistency – probability that SMk(SDi) not

equal to SUj(SDi) for a specific i, j, k within a target time bound.
• Change propagation latency - time delay from [SMk(SDi) not equal to

SUj(SDi)] until [SMk(SDi) equal to SUj(SDi)]
• Change propagation overhead - number of messages in interval

from [SMk(SDi) not equal to SUj(SDi)] until [SMk(SDi) equal to SUj(SDi)]
• Use event analysis to understand why different architectures and

consistency maintenance strategies vary

How Do Service Discovery Architectures Propagate How Do Service Discovery Architectures Propagate
Changes During Communication Failures?Changes During Communication Failures?

1/31/2002 23

• Discovery and Recovery: In both two-party and three-party architectures,
SMs, SUs, and SCMs (where applicable) strive to maintain consistent
descriptions (SDs) about discovered services and about event notifications.
Link and node failures may lead to temporary loss of information about
discovered services. Once failures are repaired, the information must be
recovered.

• We seek to develop metrics to compare and contrast different service-
discovery architectures and specifications. For example:

• How do discovery latencies and overheads compare?

• How do event registration latencies and overheads compare?

• How do recovery latencies and overheads compare?

How Do Service Discovery Architectures Recover How Do Service Discovery Architectures Recover
Consistency After Communication and Node Failures?Consistency After Communication and Node Failures?

1/31/2002 24

Project Objectives, Motivation, and Goals

Modeling & Analysis
Architecture-based approach
Generic UML structural model
Specific models instantiated with Architecture Description Language

Assessment of Architecture-Based Approach

Overview of On-Going Work
Measuring responses of different service discovery architectures
to node and link failures
How can these responses be improved?

Plans for Future Work

PresentationPresentation RoadmapRoadmap

1/31/2002 25

Extending UML Model to Encompass Extending UML Model to Encompass
Message Exchanges and AssertionsMessage Exchanges and Assertions

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

+ Message Set
+ Consistency Conditions

and other assertions

that capture commonality and
variability in Service Discovery
Domain

--> Reformulate Rapide-based models in terms of this
generic model of structure and behavior

--> Using this model as a basis, develop metrics for more precise
assessment of Service Discovery Architectures and assist
in development of future specifications and new designs.

1/31/2002 26

Investigating Metrics and Use of Architectural Investigating Metrics and Use of Architectural
Models to Measure System ComplexityModels to Measure System Complexity

Using the unified architectural model, augment basic set of
metrics by creating representations of complexity metrics
proposed in the literature, such as

algorithmic information complexity [Gammerman and Vovk]
[Kolmogorov], [Solomonoff]
cyclomatic complexity [McCabe]
others (to be selected)

1/31/2002 27

Currently Available Paper

Generic UML Structural Model (in Rational Rose format) of
Discovery Protocols, including specific projections to Jini, UPnP, and SLP
Rapide Models of Jini and UPnP (in progress).
SLX Simulation Model of UPnP (in progress).

Available Software Artifacts

Christopher Dabrowski and Kevin Mills, “Analyzing Properties and
Behavior of Service Discovery Protocols using an Architecture-based
Approach”, accepted at DARPA-sponsored Working Conference on
Complex and Dynamic Systems Architecture.

Related Web Sites
• http://www.itl.nist.gov/div897/ctg/adl/sdp_projectpage.html
• http://w3.antd.nist.gov/net_pc.shtml

To Delve MoreTo Delve More DeeplyDeeply

